

A centre within the Monash University Injury Research Institute

Modelling Road Safety Interventions in the Asia Pacific Region using a Health Impact Assessment Framework

UN Decade of Action Policy and Donor Forum, Melbourne May 6th 2014

Overview

- 1. Introduction
- 2. Health Impact Assessment Framework
- 3. Model Development and Application to 6 Cities
- 4. Active Transport Scenario
- 5. Summary

Introduction

MAJOR TRANSPORT CHALLENGES

51%→70% Living in Cities 7→10.5 Billion Population 46% ↑ Road Deaths

Many Achievements....

Source: Australian Transport Council (2006)

Emerging OPPORTUNITY

Land-Use Decisions →
Transport Choice ↑ Road Trauma

Health Impact Assessment Framework

Application of a Health Impact Assessment Framework

- Engaged key stakeholders and obtained baseline population information
- Systematic search of the literature related to land-use, transport and population health (chronic disease and road trauma)
- Health impact evidence gathering
- Developed a linear model for which population heath outcomes were derived

Model Development

Quantifying Elements of the Model

Stage 1: Land-use and Transport Mode Choice

- Meta-analytic research by Ewing and Cervero(2010)
 provided elasticities for the relationship between land-use
 and transport choice
 - Density population density, residential unit density, intersection density,
 - Diversity number of separate land uses (businesses etc) assigned to a specific area
 - <u>Distance</u> the average shortest street routes from place of residence or workplace to the nearest public transport option
 - Design refers to characteristics and layout of land including streets, intersection connectivity, footpaths, aesthetics

Quantifying Elements of the Model

Stage 2:Transport Mode Choice and Population Health

- We assessed influences of land-use and transport mode choice on the following population health outcomes
 - Road Deaths and Serious Injury (ICD-AM V00-V89)
 - Cardiovascular Disease (ICD-AM 100-199)
 - Type 2 Diabetes (ICD-AM E10-E14)
 - Respiratory Disease (ICD-AM J30-J98)

Quantifying Elements of the Model

Stage 2:Transport Mode Choice and Population Health

- Key drivers of population health associated with transport mode choice identified from the systematic review were
 - Per km exposure to risk of injury or death associated with the mode of travel in the current environment
 - Level of physical activity (as measured by metabolic equivalents (METS)
 associated with the mode choice and its effect on cardiovascular disease
 and Type 2 diabetes
 - Exposure to fine particulate matter (PM₁₀ and PM_{2.5}) associated with emissions from transport
- For comparative purposes, population health outcomes were reported as disability adjusted life years (DALY's)

Baseline Model

Data were obtained for 6 international cities

Melbourne

o Delhi

Beijing

New York

London

Copenhagen

Baseline Model

Data were obtained for 6 international cities

o Delhi

Beijing

New York

London

Copenhagen

Baseline Model: Transport Mode Share and Road Trauma

	Melb	Melbourne Beijing		Delhi		
Transport Mode	% of total km by mode	Risk of Death per km	% of total km by mode	Risk of Death per km	% of total km by mode	Risk of Death per km
Vehicle Driver	60%	7.3 E-08	35%	2.5 E-08	10%	6.7 E-08
Vehicle Passenger	25%	7.2 E-08	7%	2.5 E-08	10%	6.7 E-08
Train	10%	5.8 E-10	21%	6.0 E-09	8%	4.3 E-08
Bus	2%	3.3 E-09	30%	6.0 E-09	48%	4.6 E-08
Walking	1%	7.5 E-08	1%	1.0 E-07	7%	1.9 E-08
Bicycle	1%	1.3 E-08	16%	1.9 E-07	7%	1.8 E-08
Other (including motorcycle)	1%	1.6 E-07	2%	1.6 E-07	10%	5.6 E-08

Active Transport Scenario

Effects of Enhancing Land Use

Mode-Shift Model

- Under this scenario, we altered the baseline model to encourage active transport across the 6 cities. The model altered land use so that there was:
 - 30% increase in land-use density,
 - 30% increase in diversity, and
 - o 30% decrease in average *distance* to public transport
- We also modelled the impact of public policy initiatives that resulted in 30% of VKT currently undertaken by vehicle drivers and passengers for short trips under 5km being transferred to cycling (66%) or walking (33%).

Effects of Enhancing Land Use

Transport Mode	Melbourne	Beijing	Delhi
Vehicle Driver	-9%	-7%	-17%
Vehicle Passenger	-10%	-7%	-17%
Train/Tram	14%	14%	14%
Bus	14%	14%	15%
Walking	100%	125%	24%
Cycling	242%	18%	36%
Physical Activity Change in travel-related METS per week	22%	8%	15%
Particulate Matter Change in transport-related particulate emissions	-8%	13%	20%

DALY's Gained per 100,000 population Under Active Transport Scenario

Change in Population Health Outcomes	Melbourne	Beijing	Delhi
Cardiovascular Disease	62	-243	-838
Type 2 Diabetes	8	4	9
Respiratory Disease	1	-21	-45
Road Trauma	-8	-4	8
Total	65	-263	-849

Effects of Road Safety Interventions under the Active Transport Scenario

Summary

- The HIA framework is useful to assess the health impact of land-use and transport policies
- One approach is not applicable across all jurisdictions'
- Important points from this modelling
 - Land-use and modal choice strongly linked to health outcomes
 - Importance of infrastructure to ameriolate road trauma with increases in active transport
 - Role road safety interventions contribute to reducing road trauma

Thank You

